Translate

Thursday, September 13, 2012

Mars's dramatic climate variations are driven by the Sun


On Mars's poles there are ice caps of ice and dust layers with that reproduce to past climate variations on Mars. Researchers from the Niels Bohr Institute have related the layers in the ice cap on Mars's north pole to variations in Solar insulation on Mars, the first dated THUS climate Established history for Mars, where ice and dust accumulation has been driven by variations in insulation. The results are published in the scientific journal, Icarus.


The ice caps on Mars's poles are kilometers thick and composed of ice and dust. There are layers in the ice caps, which can be seen in cliffs and valley slopes and we have Known About these layers for decades, since the first satellite images came back from Mars. The layers are believed to reflect past climate on Mars, in the same way the Earth's climate that history can be read by analyzing ice cores from the ice caps on Greenland and Antarctica.

Solar insulation on Mars has varied over time dramatically, mainly due to large variations in the tilt of Mars's rotational axis (obliquity) and this led to dramatic climate variations on Mars. For years People Have tried to link the solar insulation and layer formation by looking for signs of periodic sequences in the visible layers, which can be seen in the upper 500 meters. Periodic signals might be traceable back to Known variations in the solar insulation on Mars, but so far it has been unclear Whether Could one find a correlation between variations in insulation and the layers.

Correlation Between ice, dust and sun
"Here we have gone in a completely different direction. We have developed a model for how the layers are built up based on basic physical and IT processes demonstrates a correlation between ice and dust accumulation and solar insulation, Christine Explains Hvidberg, a researcher in ice physics at the centre for ice and Climate at the Niels Bohr Institute at the University of Copenhagen.

She explains that in the model the layer formation is driven by insulation and the dust layers can be rich Formed by two processes: 1: Increased evaporation of ice during the summer at high obliquity (when the rotational axis tilts down) and 2: Variations in dust accumulation as a result of variations in the axial tilt. The model is simple, but physically possible and it can be used to examine the relationship between climate variability and layer formation.
                                                                                         
The Researchers Established a framework for the model that could explain the layer formation was consistent so that it with the observations. By comparing the distribution layer in the model with precise measurements of the layer structure from high resolution satellite images of the ice cap on Mars's North Pole, they have discovered that is able to the model reproduces the complex sequences in the layers.

Climate history over 1 million years
"The model dates the upper 500 meters of the northern ice cap on Mars, equivalent to approximately 1 million years and an average accumulation rate of ice and dust of 0.55 mm per year. It links the single layers to the maxima in solar insulation and dated Thereby establishes a climate history of the north pole of Mars over 1 million years, "says Christine Hvidberg.

Even though the model is only based on a comparison With The visible layers in the upper 500 meters, preliminary studies Indicate That The entire thickness and internal structure of the ice cap can be Explained by the model and can explain how Malthus ice and dust accumulation on Mars's north pole has been driven by variations in insulation sun for millions of years.

No comments: