So far, they escape
despite kilometer-scale detector systems of discovery: gravitational waves,
vibrations of space-time whose survival Einstein forecast in his theory of
general relativity. However, the detection of gravitational waves could soon be
possible. And not with special detectors, but with ordinary radio telescopes
that measure the arrival time of the radio signals from pulsars. The vibrations
are there but not - as has been mostly assumed - as a sort of background noise,
but it dominate individual signals of individual sources.
Pulsars are neutron
stars, ultra-dense stellar corpses, at a diameter of about 20 kilometers,
containing the mass of a sun. They emit highly focused radio beams swivel by
the rapid rotation of the neutron star as the beams of a lighthouse through
space. Is the earth affected by these rays, astronomers register with their
antennae, regular radio pulses? Of particular interest to the researchers are
rapidly spinning pulsars with periods in the millisecond range. Because the
pulses of these objects have stability is greater than the atomic clocks.
Three international
projects - so-called pulsar timing arrays - "now deliver high quality time
measurements of around 40 of the most stable millisecond pulsars," said
George Hobbs of the Australia Telescope National Facility. As the number of
known millisecond pulsars grows steadily and a number of new, large radio
telescopes under construction, Hobbs see good prospects that the precise time
measurements could soon provide an indication of gravitational waves. Of
course, the researcher, the signals from pulsars are disturbed on their way to
Earth by other effects, for example by density fluctuations in the interstellar
gas. But while such fluctuations for different pulsars lead to completely
different delays, the influence of gravitational waves depends on the angle
between the pulsar and the source of gravitational waves.
As a source come mainly
supermassive black holes are suitable that are merging. Almost every galaxy contains
a black hole at its center with the million or even a billion times the mass of
the sun. Since galaxies in the cosmic history repeatedly collide and merge
together, it comes again and again to the mergers of black holes. Vikram Ravi
from the University of Melbourne and his colleagues on the basis of established
models of galaxy formation studies the impact of these events on the pulsar
signals. "We have found that the statistics of the variations is not an
isotropic, statistical background of gravitational waves in line," the
scientists write in the journal "Astrophysical Journal."
The supermassive black
holes produce so no uniform noise of gravitational waves. "The reason is
that a few sources of gravitational waves dominate the variations," said Ravi
and his colleagues. They noted that there was a good chance to prove that
generated from a single pair of merging black holes differences in arrival
times of pulsar signals within five years with a Pulsar Timing Array. It was
important in the analysis of the data does not find a uniform gravitational
wave background, but after such individual events.
No comments:
Post a Comment