According to
scientists, a single supernova explosion in the surrounding area can be radioactive
titanium, the total weight of which can exceed 100 times the mass of our
planet.
These new data, to
dispose of the radioactive substance during a supernova explosion, it may give
an explanation of the mysterious processes occurring inside stars just before
they are followed by a catastrophic explosion and the release of elements from
which the universe is almost everything, from the stars and planets and ending
human .
The most powerful
explosions of stars - the birth of supernova stars. Moreover, in the process,
the synthesis of heavy elements and a process called explosive nucleosynthesis.
In the extremely complex, and the majority did not understand, the birth of the
supernova at the moment, for today's scientists are still many unknown and
incomprehensible. However, according to astrophysics, in the monitoring of
supernova explosions, in particular the residual effects of the explosions, you
can try to understand the processes that lead to them.
In a recent study, the
researchers made the study of the remains of the supernova SN1987A, whose
explosion was observed in 1987. This supernova was located on the outskirts of
the Nebula Tarantula, which is located in the Large Magellan Cloud, a dwarf
galaxy located at a distance of 168,000 light years from the solar system.
During their study, the
researchers focused on creating, during the supernova explosion of a
radioactive isotope such as titanium-44. According to computer simulations,
supernovae such class as SN1987A, can throw in their surroundings to 100 Earth
masses in the form of titanium-44.
Using a telescope
INTEGRAL, which belongs to the European Space Agency, the scientists looked for
very specific wavelengths in X-rays, which are emitted and this particular
isotope of titanium. Scientists intend to measure radiation levels in order to
get the possibility of estimating the quantity of radioactive material in
space. As a result, discovered titanium-44, in the space around the site of the
explosion of the supernova SN1987A, enough that the remains of the supernova
emitted light is not worse than a little sun.
As a result, scientists
have yet another "starting point" for modeling processes that precede
the most direct of the supernova explosion, as well as additional material for
professionals working in the field of study of explosive nucleosynthesis.
No comments:
Post a Comment